Journal of Emergencies, Trauma, and Shock
Home About us Editors Ahead of Print Current Issue Archives Search Instructions Subscribe Advertise Login 
Users online:2656   Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size   


 
 Table of Contents    
ORIGINAL ARTICLE  
Year : 2015  |  Volume : 8  |  Issue : 2  |  Page : 94-98
Increased mean arterial pressure goals after spinal cord injury and functional outcome


1 Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
2 Department of Orthopedics, Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
3 Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
4 Department of Surgery, Division of Acute Care Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Click here for correspondence address and email

Date of Submission02-Nov-2014
Date of Acceptance04-Dec-2014
Date of Web Publication21-Apr-2015
 

   Abstract 

Introduction: Acute spinal cord injury (SCI) is often treated with induced hypertension to enhance spinal cord perfusion. The optimal mean arterial pressure (MAP) likely varies between patients. Arbitrary goals are often set, frequently requiring vasopressors to achieve, with no clear evidence supporting this practice. We hypothesize that increased MAP goals and episodes of relative hypotension do not affect hospital outcome. Materials and Methods: All cervical and thoracic SCI patients treated at a level one trauma and regional SCI center over at 2.5-year period were retrospectively reviewed. Lowest and average hourly MAP was recorded for the first 72 h of hospitalization, allowing for quantification of mean MAP and the total number of episodic relative hypotensive events. These data were further compared to daily American spinal injury association motor score (AMS), which was used to determine the severity of SCI and improvement/decline during hospitalization. Patient's data were finally analyzed at theoretic MAP set points. Results: One hundred and five patients had complete data during the study period. At higher theoretic MAP set points (85 and 90), increased number of relative hypotensive episodes correlated with lower admission AMS (85 mmHg: <10 episodes, AMS 66.2; >50 episodes, 22.0; P < 0.001) and the need for vasopressors (P < 0.03) but showed no statistical change in AMS by hospital discharge. The need for vasopressors correlated with the number of hypotensive episodes and inversely related to admission AMS at all theoretic MAP goal set points but was not correlated with the change in AMS during the hospitalization. Conclusions: The frequency of relative hypotension and the need for vasopressors are progressively related to more severe SCI, as denoted by lower admission AMS. However, episodes of hypotension and the need for vasopressors did not affect the change in AMS during the acute hospitalization, regardless of theoretic MAP goal set-point. Arbitrarily elevated MAP goals may not be efficacious.

Keywords: Hypotension, mean arterial pressure goals, spinal cord injury, spinal cord perfusion

How to cite this article:
Martin ND, Kepler C, Zubair M, Sayadipour A, Cohen M, Weinstein M. Increased mean arterial pressure goals after spinal cord injury and functional outcome. J Emerg Trauma Shock 2015;8:94-8

How to cite this URL:
Martin ND, Kepler C, Zubair M, Sayadipour A, Cohen M, Weinstein M. Increased mean arterial pressure goals after spinal cord injury and functional outcome. J Emerg Trauma Shock [serial online] 2015 [cited 2019 Dec 16];8:94-8. Available from: http://www.onlinejets.org/text.asp?2015/8/2/94/155507



   Introduction Top


Acute spinal cord injury (SCI) is a potentially devastating occurrence that affects 270,000 people each year in the United States and is expected to increase. [1],[2],[3] Recovery from SCI is highly variable and felt to be associated with a multitude of factors including the care rendered during the acute hospital setting.

One such intervention is raising the blood pressure to improve blood flow to the penumbra of tissue near the injury site that is at risk of edema and infarction. This risk is accentuated by impaired vascular reactivity and loss of auto-regulation of the injured spine, making it vulnerable to systemic hypotension and impaired functional recovery. [4],[5],[6],[7]

Raising the blood pressure is often accomplished with volume resuscitation and vasopressor support; however, there is no gold standard in terms of optimal perfusion. [8] There have been several published studies on the effect of blood pressure management in acute SCI, the largest of which contained 103 patients, 41 of which required vasopressors. [9],[10],[11],[12],[13],[14],[15],[16],[17],[18],[19] Despite this, there only exists Level III evidence suggesting a target mean arterial pressure (MAP) goal of 85-90 mmHg. [9]

The most tangible outcome of improved spinal cord perfusion is ultimate functional neurologic outcome. In this current study, we hope to assess the largest published cohort of acute SCI patients and evaluate functional outcome as it relates to set MAP goals during hospitalization. We hypothesize that increased spinal cord perfusion will not be associated with improved functional outcome by hospital discharge. Spinal cord perfusion will be measured using both MAP and number of episodes of hypotension during the initial hospitalization.


   Materials and Methods Top


This single institution study was conducted at a level 1 trauma center and regional SCI center (one of 14 such centers designated by the National Institute on Disability and Rehabilitation Research). With Institutional Review Board approval, a retrospective review of the prospectively-entered trauma database was performed to identify all patients with an acute cervical or thoracic SCI during a 2.5-year period, January 2007 through June 2009.

The database was used to collect standard demographic data. The hospital's electronic medical record was then queried for lowest and average MAP for each hour of the initial 72 h of hospitalization. This allowed for quantification of mean MAP and the total number of episodic relative hypotensive events (maximum 1/h). These relative hypotensive events were subsequently denoted by the creation of theoretic MAP set points (>90, >85, >70, >65 mmHg) for which the data were compared. At each MAP set point, patients were divided into a quartile distribution based on the number of relative hypotensive events. Division into quartiles and not using the absolute number of events was necessary as the number of events differed significantly based on the theoretic MAP goal set point.

Severity of SCI and functional improvement was assessed using the American spinal injury association's (ASIA) motor score (AMS). AMS is more reliable than the more popular ASIA grade because it allows for each limb to be scored separately increasing its sensitivity and has thus been found to be the best indicator for observing the effects of therapeutic interventions. [19],[20],[21] AMS is calculated by assessing function in 5 key muscle groups per extremity, each muscle group with a maximum score of 5, creating a total body maximum score of 100. [7]

American spinal injury association motor score data were abstracted from the daily progress notes of the physical medicine and rehabilitation (PM&R) physicians. In a similar fashion to mean, MAP and number of relative hypotensive episodes, admission AMS and the change in AMS during the hospitalization was assessed in quartile fashion using the same theoretic MAP goal set points. Finally, the need for vasopressor support during the initial 72 h of hospitalization was also recorded for each patient.

Statistical analysis was performed using SPSS Version 20.0.0 (SPSS, Inc., 2011, Chicago, IL, USA). All data were subjected to descriptive statistical analysis yielding frequency scores for categorical data and mean scores with standard deviations for continuous/interval data. Statistically significant differences were evaluated by conducting inferential statistical analysis using the Chi-square test or Fisher's Exact test for categorical variable comparisons and the Student's t-test or analysis of variance (ANOVA) for continuous/interval data comparisons. Bonferroni correction was used to compare the number of patients in one quartile with the other quartiles while running the ANOVA. A P ≤ 0.05 was considered as statistically significant.


   Results Top


Two hundred and twenty-three patients presented with acute cervical and thoracic SCI during the study period. [Figure 1] displays those patients who were excluded from data analysis for missing telemetry data, AMS documentation, or missing charts. Ultimately, 105 patients were used for a complete analysis.
Figure 1: Patient selection and exclusion criteria. SCI: spinal cord injury, MAP: mean arterial pressure, AMS: ASIA motor score

Click here to view


When patient telemetry data were subjected to theoretic MAP set points, the number of episodes below that set point was calculated. Patients were then grouped into quartiles for statistical analysis based on the number of episodes. [Table 1] displays the results of the set points 90, 85, 70, and 65 mmHg. At the 90 and 85 mmHg set points, a statistically significantly higher number of relative hypotensive episodes related to lower admission AMS; however, there was no related difference in the change in AMS during the acute hospitalization. This difference was no longer statistically significant at lower theoretic MAP set points (70 and 65 mmHg).
Table 1: The effect of admission AMS and change in AMS during hospitalization on the number of episodes of hypotension (stratified by quartile); further stratified by theoretic MAP goal set-point

Click here to view


[Table 2] displays patient demographics, mechanisms of injury, and injury level. It then further segregates data by improvement or worsening of AMS during the acute hospital admission. Other than injury severity score, no statistically significant differences were found. [Table 3] displays the need for vasopressors and correlates that with the AMS at admission change in AMS during hospitalization, and the number of hypotensive episodes at each theoretic MAP goal set point. Results revealed the need for vasopressors correlated with the number of hypotensive episodes and inversely related to admission AMS at all theoretic MAP goal set points, but was not correlated with the change in AMS during the hospitalization.
Table 2: Patient demographics and clinical features with comparison of those whose AMS improved vs. those whose worsened during the admission

Click here to view
Table 3: The effect of the admission AMS, change in AMS during hospitalization and the number of hypotensive episodes by theoretic MAP goal set-point versus the need for vasopressors

Click here to view



   Discussion Top


This study revealed significant variances in the hemodynamics of acute SCI patients. Our results showed lower MAPs, more frequent hypotensive episodes, and an increased need for vasopressors occurred in patients with more severe injuries. These factors, however, did not affect the change in AMS during hospitalization. These findings are significant because contemporary clinical practice in SCI still includes driving MAP goals to supra-physiologic levels.

Maintaining supra-physiologic MAP goals is not without consequence. Additional intra-vascular volume and vasopressors are often employed to meet treatment objectives. Whereas in true vasoplegia, where these agents improve outcome despite side-effects, there use to create relative hypertension alters this risk/benefit ratio. Further, over resuscitation with volume can result in fluid overload that has been associated with both cardio-pulmonary complications and surgical complications. [22],[23] Thus, deploying these strategies warrants appropriate considerations of the deleterious effects and determining the associated risk/benefit ratio.

Appropriate patient selection is one method of optimizing the risk to benefit ratio. Complete recovery is extremely rare and even more so with complete SCI. Fortunately, approximately 60% of acute SCIs are incomplete, a percentage that has increased in the last 15 years. [3] Focusing therapy on this select population may be an area worthy of future study. Similarly, this study only included cervical and thoracic SCI patients. This select population was chosen secondary to the greater likelihood of autonomic dysregulation from loss of normal sympathetic function. Lumbar SCI patients are theoretically less likely to benefit from induced hypertension.

Having conducted this study at a regional SCI center, the study population is likely biased toward more severe injuries that community practitioners felt were too complex. These more severe injuries may have biased our results but at the same time represent the most at-risk population. The lack of support for increasing MAP goals in our results is despite the fact that not only does our center practice induced hypertension, but it also has all of the collaborative resources of a regional SCI center. This includes the multidisciplinary coordination of care between trauma, orthopedics, neurosurgery, PM&R, amongst others.

An added benefit of regional SCI centers is the close association with rehabilitation facilities. Substantial recovery can take place in the weeks to months following injury. AMS improvements can, therefore, be noted during the acute hospitalization, but also at rehab and beyond. Our dataset was limited to the acute hospitalization, but future studies of more delayed outcomes may yield different findings.

Another consideration for our negative findings is the diversity of our patient population. Perhaps some patients normally require a hypertensive state due to chronic vascular disease and after injury are relatively hypotensive as compared to their baseline. This is well described in hypertensive end-stage renal patients who become transiently relatively hypotensive during dialysis and develop cardiac ischemia. [24] In our study, we did not look at preexisting hypertension but this may be a more select population to study for the benefits of increased MAP goals after SCI.

Another limitation of the current study is the fact that we only looked at the lowest MAP during a 1 h period, but we do not have a record of how long that hypotensive episode lasted. In theory, this limitation should affect both groups equally but this cannot be measured within the limits of our retrospective dataset. Finally, a single institution and retrospective nature of this study are also noted limitations.


   Conclusion Top


The frequency of episodes of relative hypotension and the need for vasopressors are progressively related to more severe SCI, as denoted by lower admission AMS. However, episodes of hypotension and the need for vasopressors did not affect the change in AMS during the acute hospitalization, regardless of theoretic MAP goal set-point. Arbitrarily elevated MAP goals may not be efficacious but further prospective study with longer-term follow-up is needed.

 
   References Top

1.
Spinal Cord Injury Facts and Figures at a Glance. Available from: http://www.nscisc.uab.edu/PublicDocuments/fact_figures_docs/Facts%202012%20Feb%20Final.pdf. [Last accessed on 2014 Feb 21].  Back to cited text no. 1
    
2.
Lee BB, Cripps RA, Fitzharris M, Wing PC. The global map for traumatic spinal cord injury epidemiology: Update 2011, global incidence rate. Spinal Cord 2014;52:110-6.  Back to cited text no. 2
    
3.
Devivo MJ. Epidemiology of traumatic spinal cord injury: Trends and future implications. Spinal Cord 2012;50:365-72.  Back to cited text no. 3
    
4.
Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 1999;44:1027-39.  Back to cited text no. 4
    
5.
King BS, Gupta R, Narayan RK. The early assessment and intensive care unit management of patients with severe traumatic brain and spinal cord injuries. Surg Clin North Am 2000;80:855-70, viii.  Back to cited text no. 5
    
6.
Tator CH. Hemodynamic issues and vascular factors in acute experimental spinal cord injury. J Neurotrauma 1992;9:139-40.  Back to cited text no. 6
    
7.
Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 2011;34:535-46.  Back to cited text no. 7
    
8.
Ploumis A, Yadlapalli N, Fehlings MG, Kwon BK, Vaccaro AR. A systematic review of the evidence supporting a role for vasopressor support in acute SCI. Spinal Cord 2010;48:356-62.  Back to cited text no. 8
    
9.
AANS Guidelines for the Management of ASCI and SCI. Available from: http://www.aans.org/Education%20and%20Meetings/~/media/Files/Education%20and%20Meetingf/Clinical%20Guidelines/TraumaGuidelines.ashx. [Last accessed on 2014 Feb 21].  Back to cited text no. 9
    
10.
Tator CH, Rowed DW, Schwartz ML, Gertzbein SD, Bharatwal N, Barkin M, et al. Management of acute spinal cord injuries. Can J Surg 1984;27:289-93, 6.  Back to cited text no. 10
[PUBMED]    
11.
Zäch GA, Seiler W, Dollfus P. Treatment results of spinal cord injuries in the Swiss Parplegic Centre of Basle. Paraplegia 1976;14:58-65.  Back to cited text no. 11
    
12.
Lehmann KG, Lane JG, Piepmeier JM, Batsford WP. Cardiovascular abnormalities accompanying acute spinal cord injury in humans: Incidence, time course and severity. J Am Coll Cardiol 1987;10:46-52.  Back to cited text no. 12
[PUBMED]    
13.
Levi L, Wolf A, Belzberg H. Hemodynamic parameters in patients with acute cervical cord trauma: Description, intervention, and prediction of outcome. Neurosurgery 1993;33:1007-16.  Back to cited text no. 13
    
14.
Vale FL, Burns J, Jackson AB, Hadley MN. Combined medical and surgical treatment after acute spinal cord injury: Results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg 1997;87:239-46.  Back to cited text no. 14
    
15.
Wolf A, Levi L, Mirvis S, Ragheb J, Huhn S, Rigamonti D, et al. Operative management of bilateral facet dislocation. J Neurosurg 1991;75:883-90.  Back to cited text no. 15
    
16.
Levi L, Wolf A, Rigamonti D, Ragheb J, Mirvis S, Robinson WL. Anterior decompression in cervical spine trauma: Does the timing of surgery affect the outcome? Neurosurgery 1991;29:216-22.  Back to cited text no. 16
    
17.
Bilello JF, Davis JW, Cunningham MA, Groom TF, Lemaster D, Sue LP. Cervical spinal cord injury and the need for cardiovascular intervention. Arch Surg 2003;138:1127-9.  Back to cited text no. 17
    
18.
Mathias CJ, Frankel HL, Christensen NJ, Spalding JM. Enhanced pressor response to noradrenaline in patients with cervical spinal cord transection. Brain 1976;99:757-70.  Back to cited text no. 18
[PUBMED]    
19.
Kong CY, Hosseini AM, Belanger LM, Ronco JJ, Paquette SJ, Boyd MC, et al. A prospective evaluation of hemodynamic management in acute spinal cord injury patients. Spinal Cord 2013;51:466-71.  Back to cited text no. 19
    
20.
Marino RJ, Graves DE. Metric properties of the ASIA motor score: Subscales improve correlation with functional activities. Arch Phys Med Rehabil 2004;85:1804-10.  Back to cited text no. 20
    
21.
Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 2007;45:190-205.  Back to cited text no. 21
    
22.
Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth 2002;89:622-32.  Back to cited text no. 22
    
23.
Nessim C, Sidéris L, Turcotte S, Vafiadis P, Lapostole AC, Simard S, et al. The effect of fluid overload in the presence of an epidural on the strength of colonic anastomoses. J Surg Res 2013;183:567-73.  Back to cited text no. 23
    
24.
Ritz E, Koch M. Morbidity and mortality due to hypertension in patients with renal failure. Am J Kidney Dis 1993;21:113-8.  Back to cited text no. 24
    

Top
Correspondence Address:
Dr. Niels D Martin
Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-2700.155507

Rights and Permissions


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
  
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2370    
    Printed82    
    Emailed3    
    PDF Downloaded17    
    Comments [Add]    

Recommend this journal