Journal of Emergencies, Trauma, and Shock
Home About us Editors Ahead of Print Current Issue Archives Search Instructions Subscribe Advertise Login 
Users online:940   Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size   


 
BASIC SCIENCE RESEARCH Table of Contents   
Year : 2009  |  Volume : 2  |  Issue : 3  |  Page : 150-154
Angiotensin-converting enzyme gene polymorphism in hypertensive rural population of Haryana, India


1 Department of Pharmacology, M. M. College of Pharmacy, M. M. University, Mullana, Haryana, India
2 Department of Medicine, M M. Institute of Medical Sciences, M. M. University, Mullana, Haryana, India
3 Department of Pharmacology, Punjabi university, Patiala, Punjab, India
4 Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritstar, Punjab, India

Click here for correspondence address and email

Date of Submission12-Dec-2008
Date of Acceptance03-Apr-2009
Date of Web Publication31-Aug-2009
 

   Abstract 

Background: Essential hypertension is a complex genetic disorder influenced by diverse environmental factors. Of the various physiological pathways affecting the homeostasis of blood pressure, the renin-angiotensin system (RAS) is known to play a critical role. Angiotensin-I converting enzyme (ACE) is a significant component of RAS and an insertion/deletion (I/D) polymorphism in its gene has been implicated in predisposition to hypertension. Objective: The present study is aimed to determine the association, if any, of ACE I/D polymorphism with essential hypertension in a rural population of Haryana, India. Materials and Methods: The blood samples were collected from the patients visiting M. M. Institute of Medical Sciences, Mullana, Haryana. DNA from the patients (106) and control (110) specimens were isolated, amplified by PCR and analyzed employing agarose gel electrophoresis. Results: There was no significant difference in the distribution of DD, II and I/D genotypes of ACE polymorphism in essential hypertensive patients (28.8, 25.5, and 46.2%) and their ethnically matched normal control (24.5, 30, and 45.5), respectively. The two groups also presented with very similar allelic frequencies and were also found to be in Hardy-Weinberg equilibrium. Conclusions: The present study demonstrates that ACE I/D polymorphism is not a risk factor for essential hypertension in the hitherto unstudied rural population of Haryana.

Keywords: Angiotensin-I converting enzyme, insertion/deletion polymorphism, essential hypertension, North Indian population

How to cite this article:
Gupta S, Agrawal BK, Goel RK, Sehajpal PK. Angiotensin-converting enzyme gene polymorphism in hypertensive rural population of Haryana, India. J Emerg Trauma Shock 2009;2:150-4

How to cite this URL:
Gupta S, Agrawal BK, Goel RK, Sehajpal PK. Angiotensin-converting enzyme gene polymorphism in hypertensive rural population of Haryana, India. J Emerg Trauma Shock [serial online] 2009 [cited 2020 Jul 13];2:150-4. Available from: http://www.onlinejets.org/text.asp?2009/2/3/150/55323



   Introduction Top


Cardiovascular diseases are becoming a major health burden in developing countries. About 2.6 million Indian people are estimated to die due to coronary heart disease (CHD) alone by the year 2020. [1] Hypertension is one of the important risk factor for the development of CHD. It is a multifactorial and polygenic disorder in which the interaction between several candidate genes and environmental factors play a role. The renin angiotensin system (RAS) is an important regulatory mechanism for maintaining normal blood pressure, fluid and electrolyte balance and its encoding components have been proposed as independent factors for hypertension and other cardiovascular diseases. [2],[3]

Angiotensin-I-converting enzyme (ACE) is a zinc metallopeptidase widely distributed on the surface of endothelial and epithelial cells and participates in producing arteriolar constriction and a rise in systolic and diastolic blood pressure. The ACE is encoded by a 21 kb gene that consists of 26 exons and is located on chromosome 17 and contains a polymorphism in the form of either insertion (I) or deletion (D) of a 287 base pair Alu repetitive sequence in intron 16. [4] This polymorphism is shown to be associated with the interpersonal variability and individuals carrying the deletion allele are associated with increased plasma ACE levels. Earlier studies have shown association between this polymorphism and several cardiovascular diseases like myocardial infarction, [5] left ventricular hypertrophy, [6] cardiomyopathy, [2] and hypertension. [7],[8] Studies have been carried out on the association between the ACE I/D polymorphism and hypertension in various populations and both positive and negative association have been reported. [9],[10],[11],[12] The present study is the first report investigating the role of this important polymorphism in a rural population of Haryana, North India.


   Materials and Methods Top


Study population

In the present investigation, the blood samples of 106 essential hypertensive patients and 110 samples of age and sex matched normal, healthy individuals as control group were collected with informed consent from M. M. Institute of Medical, Sciences, Mullana, Haryana. It is prudent to mention that it is the only mutlifacility hospital in Mullana and caters to a rural region within a radius of around 30 km. Patients were initially not on any medication and subsequently, consented for regular check up and treatment. Their follow up is up to date. The blood samples were collected in tubes containing EDTA as an anticoagulant. The samples were transported on ice to the laboratory and were processed on the same day. The isolated DNA samples were stored at −20°C till further analysis.

Various parameters like age, sex, BMI, blood pressure, and dietary patterns were recorded in a questionnaire. Blood pressure (supine) was measured after the subject had rested at least 15 minutes with the help of mercury sphygmomanometer and stethoscope by ausculatory method. [13] The recordings were done at least three times on different days. The hypertension status of the study sample was assessed using standard criteria formulated by Joint National Committee VII. [14] Unrelated subjects living in the same rural background and without any history of hypertension, diabetes and other immunosuppressive conditions were enrolled as control subjects.

Genotyping angiotensin-I converting enzyme insertion/deletion polymorphism

DNA samples were isolated from peripheral blood lymphocytes by the standard modified inorganic method as described by Miller et al. [15] and quantified following standard spectrophotometric analysis. The ACE I/D polymorphism were detected by the polymerase chain reaction using the primers flanking a 287 bp insertion sequence. [4] The optimized reaction conditions consisted of 40 ng of genomic DNA in a reaction volume of 30 µl contains 0.16 µM of each primer, 30 µM of each dNTP, 10 mM Tris-HCL (pH-9.0), 1.5 mM MgCl2, 50 mM KCl, 0.01% gelatin, and 0.3 U of Taq DNA polymerase (Bangalore Genei, Bangalore). Amplification was carried out for 35 cycles, each cycle consisting of denaturation at 94°C for 30 s, annealing at 58°C for 20 s, extension at 72°C for 20 s and finally a 3 m extension at 72°C. The PCR products were resolved in 2% agarose gel and visualized following ethidium bromide staining. All samples, identified as DD after initial amplification, were reconfirmed with an insertion-specific primer pair:

Forward primer: 5'-GCCACTACGCCCGGCTAAT-3';

Reverse primer: 5'- GATGTGGCCATCACATTCGTCAGAT-3').

The reaction conditions and amplification parameters for this confirmatory reaction were the same as stated above. Known controls of each genotype were amplified with each set of samples for the ACE I/D polymorphism.

Statistical analysis

Data analysis was done with the help of an SPSS version 7.5. Continous variables are expressed as means ± SD. Intergroup comparisons are made using students t test. Allele frequencies were calculated from genotype frequencies and were compared using chi-squared (χ2 ) statistics. P value < 0.05 was considered statistically significant.


   Results Top


The clinical details of the hypertensive and control subjects are presented in [Table 1]. The mean systolic blood pressure (SBP) and diastolic blood pressure (DBP) were significantly higher in the hypertensive subjects than in the control subjects. Interestingly, the family history of hypertension and BMI among the patients was also statistically significant as compared to the normal controls. The incidence of individuals with history of smoking and alcohol consumption was higher among the hypertensive patients as compared to the controls, however the differences were statistically nonsignificant ( P >0.05).

[Table 2] shows the data pertaining to all the genotypes and the allele distribution in hypertensive patients and normal healthy controls. Both the groups were in the Hardy-Weinberg equilibrium. The frequency of I/D heterozygote as compared to homozygote was higher in both the patients and control group. It was observed that the DD genotype was slightly higher than II genotype in patients as compared to control. The I/D genotypes was 46.2% in hypertensive patients while it was 45.5% in controls. However, the differences were statistically not significant. The frequency of the D allele was only marginally higher in essential hypertensive patients as compared to the normal controls.

[Figure 1] depicts a representative agarose gel of various genotypes of the ACE I/D polymorphism in the studied samples. Known DNA samples from II and DD subjects were amplified as controls and yielded expected products of 490 and 190bp, respectively ([Figure 1], lanes 1,2). Sample showing PCR amplified product for both the alleles were labeled as ID genotype ([Figure 1], lanes 3, 6, 11, 14]).


   Discussion Top


Incidence of hypertension is increasing alarmingly in various populations of India and other developing nations. [16],[17],[18] It is universally accepted that systemic hypertension is a distinct risk factor for various cardiovascular emergencies, particularly left ventricular failure, myocardial infarction, and stroke. The present study is the first report investigating the association of ACE I/D polymorphism with hypertension in a rural population of Haryana. The strength of present study lies in extensive door-to-door preliminary investigation to identify essential hypertensive patients in villages surrounding the MM University, Ambala, Haryana, over a three-year (2003-2006) period. Preliminary survey identified a total of 2,295 hypertensive subjects, of which 930 were essential hypertensive and were not on any medication. These essential hypertensive patients were persuaded to visit Medical College at Mullana, Haryana for further investigations and 106 (~11%) of them consented to be part of this study. The consent rate might appear low but one has to keep in mind that these subjects belong to rural area, where rate of illiteracy is very high, and despite three blood pressure measurements on different days indicating elevated levels a few of them refused to accept that they have hypertension.

Pooling of epidemiology studies show that hypertension is present in 25% urban and 10% rural subjects in India. [19] Clearly suggesting that urban conditions somehow increase the prevalence of this disease. Therefore, another forte of the study lies in the fact that patients living in the rural area were studied in the same conditions thus minimizing the influence of urban environment on the disease condition. Family history and body mass index in the hypertensive patients shows statistically significant difference from the control population [Table 1] and it does suggest that genetic factors and body mass index do influence the ability to develop this disease in the studied rural population of Haryana. These observations are in line with earlier report providing evidence that heritable factors in combination with a number of recognized environmental risk factors are important determinants of the pathogenesis and natural history of essential hypertension. [20]

It is important to ascertain gene(s) that are involved in hypertension. This would help in identifying individuals at an increased risk of developing this disease and to initiate appropriate actions in them to avoid development or delay the onset of disease. Genome wide scan and candidate gene approach are two strategies used in dissecting complex genetic diseases. [21] The former, links specific chromosomal region with inheritance of the disease, is technically cumbersome and requires sophisticated infrastructure. The candidate gene approach targets selected gene with defined polymorphism(s) for their association with the disease. The polymorphism could exist as single nucleotide change, insertion/deletion of nucleotide sequence or repetitive DNA elements. A gene and its selected polymorphism preferably should have the following features to make them a candidate target:

  • The gene product must be functionally relevant to hypertension
  • Polymorphism within the gene must alter its function
  • Hypertension needs to link to the chromosomal region harboring the candidate gene.
Available studies demonstrate that the ACE I/D polymorphism fulfills above mentioned criterions in the context of hypertension [7,22-24] and was therefore investigated in the present study.

The frequencies of different genotypes were found to be similar in patient and the control population [Table 2]. The frequencies of both the alleles (I/D) are quite high in the control and cases, thus obviating the possibility that the frequency of the rare allele is a cause for concern in the studied sample. Lack of association between ACE I/D polymorphism and essential hypertension have been reported by investigators in Indian and other populations of the world. [25],[26],[27],[28],[40] Ethnic background is known to influence the ACE I/D polymorphism globally. [29,30] A significant association of the ACE high producing D allele with hypertension in African, Americans, Chinese, and Japanese populations have already been reported. [8],[22],[23],[24] However, two studies from Australia [31] and Pakistan [32] recorded the association of I allele with hypertension. The association of I allele with hypertension in Pakistan population was attributed to limited number of individuals studied [32] and to the presence of high levels of inbreeding. [25]

The frequency of D allele of ACE I/D polymorphism in different hypertensive populations of India varied within 0.522 to 0.409 [Table 3]. The highest frequency was reported in a Sikh group from Punjab that also showed an association between the D allele and the hypertension. Similar observations have also been made on populations from other states of India. [30] The frequency of D allele in the studied patient and control populations were well within the reported range for the North Indian populations [Table 3]. Contrary to the earlier findings, no association between D allele and essential hypertension was observed in the rural population of Haryana. We believe the number of patients studied in other Indian populations showing positive associations with D allele [Table 3] were very small to allow any meaningful conclusion.

Identifying association between a gene and a complex genetic disease is difficult. One possible reason for this is the involvement of a large number of genes in the etiology of essential hypertension. Furthermore, these genes may interact with each other in different combinations to give rise to a similar disease phenotype. The magnitude of this problem makes the frequency of any polymorphism contributing to a disease phenotype marginally higher in disease group compared with unaffected controls. [33] Linkage analysis has limited power to detect such small effects [34] and case control studies with matched controls from the same population had greater probability of detecting such minute effects. [21] The inability to find association between ACE I/D polymorphism and hypertension in the present study strongly point out that ACE gene is not playing a predominant role in the pathophysiology of this disease in our population and is not a good predictor of susceptibility to hypertension. Similar observations have also been made in a Meta analysis studying the role of genetic polymorphisms in hypertension. [40] Since hypertension is a complex genetic disorder, it is assumed that there could be other genetic and environmental factors that interact and influence the development of this disease.

The results of the present study has triggered two very valid questions, i) what is the effect of different ACE I/D genotypes on the progression of the disease? and ii) are different drug regimens required for individuals with different ACE I/D polymorphism? Interestingly, our preliminary observations do suggest that hypertensive patients with DD phenotypes require higher doses of ACE inhibitor in their drug regimen as compared to their II counterparts (data not shown). The information will be of immense use in tailoring individualized therapy to hypertensive patients based on the ACE I/D genotypes.


   Conclusion Top


Our study suggests that the ACE I/D polymorphism is not a risk factor for the development of essential hypertension in the studied rural population from Haryana.[42]

 
   References Top

1.Nistar S. Prevention of coronary heart disease in South Asia. Lancet 2002;360:1015-8.  Back to cited text no. 1      
2.Raynolds MV, Bristow MR, Bush EW, Abraham WT, Lowes BD, Zisman LS. Angiotensin-converting enzyme DD genotype in patients with ischemic or idiopathic dilated cardiomyopathy. Lancet 1993;342:1073-5.  Back to cited text no. 2      
3.Higaki J, Baba S, Katsuya T, Sato N, Ishikawa K, Mannami T. Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men. Circulation 2000;101:2060-5.  Back to cited text no. 3      
4.Rigat B, Hubert C, Corvol P, Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCPI) (dipeptidyl carboxypeptidase). Nucleic Acids Res 1992;20:1433.  Back to cited text no. 4      
5.Ludwig E, Corneli PS, Anderson JL, Marshall HW. Lalouel JM, Ward RH. Angiotensin-converting enzyme gene polymorphism is associated with myocardial infarction but not with development of coronary stenosis. Circulation 1995;91:2120-4.  Back to cited text no. 5      
6.Schunkert H, Hense HW, Holmer SR, Stender M, Perz S, Keil U, Lorell BH. Association between a deletion polymorphism of the angiotensin-converting enzyme gene and left ventricular hypertrophy. N Engl J Med 1994;330:1634-8.  Back to cited text no. 6      
7.Duru K, Farrow S, Wang JM, Lockbetteb W, Kurtz T. Frequency of a deletion polymorphism in the gene for angiotensin converting enzyme is increased in African-americans with hypertension. Am J Hypertens 1994;7:759-62.  Back to cited text no. 7      
8.Barley J, Blackwood A, Miller M, Markandu ND, Carter ND, Jeffery S. Angiotensin Converting Enzyme gene I/D polymorphism blood pressure and the rennin-angiotensin system in Caucasian and afro-Caribbean peoples. J Hum Hypertens 1996;10:31-5.  Back to cited text no. 8      
9.Jeng JR, Harn HJ, Jeng CY, Yueh KC, Shieh SM. Angiotensin I converting enzyme gene polymorphism in Chinese patients with hypertension. Am J Hypertens 1997;10:558-61.  Back to cited text no. 9      
10.Higashimori K, Zhao Y, Higaki J, Kamitani A, Katsuya T. Association analysis of a polymorphism of the angiotensin converting enzyme gene with essential hypertension in the Japanese population. Biochem Biophys Res Commun 1993;191:399-404.  Back to cited text no. 10      
11.Vassilikioti S, Doumas M, Douma S, Petidis K, Karagiannis A. Angiotensin converting enzyme gene polymorphism is not related to essential hypertension in Greek population. Am J Hypertens 1996;9:700-02.  Back to cited text no. 11      
12.Chiang FT, Lai ZP, Chern TH, Tseng CD, Hsu KL. Lack of association of the angiotensin converting enzyme gene polymorphism with essential hypertension in a Chinese population. Am J Hypertens 1997;10:197-201.  Back to cited text no. 12      
13.Rose GA, Blackburn H. Cardiovascular Survey Methods. WHO Monograph Series1968;56:90-5.  Back to cited text no. 13      
14.Chobanian AV, Bakris GL,. Black HR, Cushman WC, Green LA, Izzo JL, Jones DW, Materson BJ, Oparil S, Wright JT, Roccella EJ, Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42:1206- 1252.  Back to cited text no. 14      
15.Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from nucleated cells. Nucleic Acids Res 1988;16:1215.  Back to cited text no. 15      
16.Das SK, Sanyal K, Basu A. Study of urban community survey in India: Growing trend of high prevalence of hypertension in a developing country. Int J Med Sci 2005;2:70-8.  Back to cited text no. 16      
17.Lane D, Beevers DG, Lip GYH. Ethnic differences in blood pressure and the prevalence of hypertension in England. J Hum Hypertens 2002;16:267-73.  Back to cited text no. 17      
18.Wang TJ and Vasan RS. Epidemiology of uncontrolled hypertension in United States. Circulation 2005;112:1651-2.  Back to cited text no. 18      
19.Gupta R. Trends in hypertension epidemiology in India. J Hum Hypertens 2004;18:73.  Back to cited text no. 19      
20.Bhavani BA, Padma T, Shastry BKS, Reddy NKS. Gender specific association on insertion/deletion polymorphism of the human angiotensin converting enzyme gene with essential hypertension. Int J Hum Genet 2004;4:207-13.  Back to cited text no. 20      
21.Lander ES, Schork NJ. Genetic dissection of complex traits science 1994;265:2037-48.  Back to cited text no. 21      
22.Chiang FT, Chern TH, Lai ZP, Tseng CD, Hsu KL. Age and gender dependent association of the angiotensin-converting enzyme gene with essential hypertension in Chinese population. J Hum Hypertens 1996;10:823-6.  Back to cited text no. 22      
23.Morrise T, Takeguchi Y, Takeda R. Angiotensin converting enzyme polymorphism and essential hypertension. Lancet 1994; 343:125.  Back to cited text no. 23      
24.Nakano Y, Oshima T, Hiranga H, Matsuura H, Kajiyama G, Kambe M. DD genotype of the angiotensin - converting enzyme gene is a risk factor for early onset of essential hypertension in Japanese patients. J Lab Clin Med 1998;131:502-06.  Back to cited text no. 24      
25.Randhawa NK, Kumar A, Matharaoo K Bhanwer AJS. Association studies of angiotensin converting enzyme gene insertion/deletion polymorphism with hypertension in Punjabi population. Int J Hum J Genet 2006;6:317-21.  Back to cited text no. 25      
26.Harrap SB, Davison HR, Connor JM, Soubrier F, Fraser R, Foy CJ, Walt GC. The angiotensin converting enzyme gene and predisposition of high blood pressure. Hypertension 1993;21:455-60.  Back to cited text no. 26      
27.Jeunemaitre X, Lipton PR, Hunt SC, Williams RR, Lalouel JM. Absence of linkage between the angiotensin-converting enzyme gene and human essential hypertension. Nature Genet 1992;1:72-5.  Back to cited text no. 27      
28.Kamdar S, Daniel H, Fogarty P, Lawson M, Munroe P, Caulfield M. ACE insertion/deletion (I/D) polymorphism in Vincentian African Caribbean with essential hypertension J. Hum. Hypertens1994;8:611.  Back to cited text no. 28      
29.Sekerli E, Katsanidis D, Papadopoulou V, Makedou A, Vavatsi N, Gatzola M. Angiotensin-I converting enzyme gene and I/D polymorphism distribution in the Greek population and a comparison with other European populations. J Genet 2008;1:91-3.  Back to cited text no. 29      
30.Pasha MA, Khan A, Kumar R, Ram R, Grover S, Shrivatsva K, Selvamurthy W, Variations in angiotensin converting enzyme gene insertion/deletion polymorphism in Indian populations of different ethnic origins. J Bio Sci 2002;27:67-70.  Back to cited text no. 30      
31.Zee RY, Lou YK, Griffiths LR, Morrise BJ. Association of a polymorphism of angiotensin-I converting enzyme gene with essential hypertension. Biochem Biophys Res Commun 1992;184:9-15.  Back to cited text no. 31      
32.Ismail M, Akhter N, Nasir M, Firesat S, Yub Q, Khaliq S. Association between the angiotensin converting enzyme gene insertion/deletion polymorphism and essential hypertension in young Pakistan patients. J Biochem Mol Bio 2004;35:252-5.  Back to cited text no. 32      
33.Gray IC, Campbell DA, Spurr NK. Single nucleotide polymorphisms as tools in human genetics. Hum Mol Genet 2000;9:2403-8.  Back to cited text no. 33      
34.Risch M, Merikangas A. The future of genetic studies of complex human diseases Science 1996;273:1516-7.  Back to cited text no. 34      
35.Teresa M, Steela P, Barlassina C, Maumta P, Lanzani C. ACE and á adducin polymorphism as marker of individual response to diuretic therapy. Hypertension 2003;41:398-403.  Back to cited text no. 35      
36.Polupanov A, Halmatov A, Pak O, Romanova T, Kim E, Cheskidova N, Aldashev A. The I/D polymorphism of the angiotensin converting enzyme gene as a risk factor for ischemic stroke in patients with essential hypertension in Kyrgyz population. Areh Turk Soc Cardial 2007;35:347-53.  Back to cited text no. 36      
37.Schut A, Gyseles B, Stricker B, Hofman A, Witteman J, Pals H. Angiotensin Converting Enzyme gene insertion/deletion polymorphism and the risk of heart failure in hypertension subjects. Eur Heart J 2004;25:2143-8.  Back to cited text no. 37      
38.Agachan B, Isbir T, Yilmaz H, Akoh E. Angiotensin converting enzyme I/D, angiotensinogen. T174M-M235T and angiotensin -II type I receptorA1166C gene polymorphism in Turkish hypertensive patients. Exp Mol Med 2003;6:545-9.  Back to cited text no. 38      
39.Glavnik N, Petrovic D. M235T Polymorphism of the angiotensin gene and I/D polymorphism of the angiotensin-I converting enzyme gene in essential arterial hypertension in Caucasians. Folia Biol Prague 2007;53:69-70.  Back to cited text no. 39      
40.Mondry A, Loh M, Lihu P, Zuhu A, Nagel M. Polymorphism of the insetion/deletion ACE and M235T AGT genes and hypertension surprising new findings and meta analysis of data. BMC Nephrology 2005;6:1.  Back to cited text no. 40      
41.Ishigami T, Iwamoto T, Tamura K, Yamaguchi S, Iwaswa K, Uchino K, Umemura S, Ishii M. Angiotensin converting enzyme gene polymorphism and essential hypertension in Japan. Ethnic difference in ACE genotype. Am J Hypertens 1995;1:95-7.  Back to cited text no. 41      
42.Lee EJ. Population genetics of the angiotensin converting enzyme in Chinese. Br J Clin Pharmacol 1994;37:212-4.  Back to cited text no. 42      

Top
Correspondence Address:
Prabodh K Sehajpal
Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritstar, Punjab
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-2700.55323

Rights and Permissions


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]

This article has been cited by
1 GenePolymorphisms of Adducin GLY460TRP, ACE I/D, AND AGT M235T in Pediatric Hypertension Patients
Osman Evliyaoglu
Medical Science Monitor. 2014; 20: 1745
[Pubmed] | [DOI]
2 Association of angiotensin-converting enzyme and angiotensin-converting enzyme-2 gene polymorphisms with essential hypertension in the population of Odisha, India
Manisha Patnaik,Pallabi Pati,Surendra N. Swain,Manoj K. Mohapatra,Bhagirathi Dwibedi,Shantanu K. Kar,Manoranjan Ranjit
Annals of Human Biology. 2013; : 1
[Pubmed] | [DOI]
3 Angiotensin-converting enzyme gene DD genotype is associated with increased systolic blood pressure in an Australian Rural Type 2 Diabetic Cohort
Ethan Ng,Yaxin Lu,Brett Hambly,Herbert F Jelinek,Bing Yu,Slade Matthews,Craig S McLachlan
Hypertension Research. 2013; 36(4): 381
[Pubmed] | [DOI]
4 Association of Angiotensin Converting Enzyme (Insertion/Deletion) Gene Polymorphism with Essential Hypertension in Northern Indian Subjects
Kamna Srivastava, Ruchi Sundriyal, Prakash C. Meena, Jagriti Bhatia, Rajiv Narang, Daman Saluja
Genetic Testing and Molecular Biomarkers. 2012; 16(3): 174
[VIEW] | [DOI]
5 The relationship of ACE and CETP gene polymorphisms with cardiovascular disease in a cohort of Asian Indian patients with and those without type 2 diabetes
Journal of Diabetes and its Complications. 2011; 25(5): 303
[VIEW] | [DOI]



 

Top
 
  Search
 
  
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
    Introduction
    Materials and Me...
    Results
    Discussion
    Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed4223    
    Printed203    
    Emailed2    
    PDF Downloaded265    
    Comments [Add]    
    Cited by others 5    

Recommend this journal